(3) Moss, K. C.; Robinson, F. P. Can. J. Chem. 1973, 51, 505.
(4) Dilli, S.; Patsalides, E. Aust. J. Chem. 1978, 31, 765,
(5) Chen, L. S.; Cummings, S. C. Inorg. Chem. 1978, 17, 2358.
(6) Harries, H. J.; Parry, G.; Burgess, J. J. Inorg. Nucl. Chem. 1978, 40. 1941.
(7) Saeed, A. A. H.; Al-Zagoum, M. N.; Watton, M. H. Can . J. Spectrose. 1980, 25, 137 and references cited therein.
(8) Saeed, A. A. H.; Sultan, A. W. A.; Selman, S. A.; Abood, N. A. Can J. Spectrosc. 1983, 28, 104.
(9) Saeed, A. A. H.; Watton, M. H.; Sultan, A. W. A. Thermochim. Acta 1983, 67, 17.
(10) Martell, A. E.; Belford, R. Linn; Calvin, M. J. Inorg. Nucl. Chem 1858, 5, 170.
(11) Ueno, K.; Martell, A. E. J. Phys. Chem. 1957, 6, 257
(12) Witkop, B. J. Am. Chem. Soc. 1959, 78, 2873.
(13) Richardson, M. F.; Sievers, R. E. J. Inorg. Nucl. Chem. 1970, 32, 1895.
(14) Cummings, S. C.; Sievers, R. E. Inorg. Chem. 1972, 11, 1483.
(15) Saeed, A. A. H. J. Heterocycl. Chem. 1982, 19, 113.

Received for review November 22, 1983. Accepted February 22, 1984.

Behavior of 4,5-Dihydropyridazinone Derivatives and 3-Chloropyridazine toward Alkylating Agents, Acylhydrazines, and Azides

Maher A. El-Hashash* and Sayed I. El-Nagdy
Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

Refalt M. Saleh
Chemistry Department, Faculty of Engineering, Suez Canal University, Port Said, Egypt

Abstract

The pyridazinones 2 have been synthesized from the Interaction of acld 1 with hydrazines. Reactions of 2 with electrophilic reagents gave 0 -alkylated derivatives, with $\mathrm{POCl}_{3} / \mathrm{PCl}_{5}$ gave chloro derlvatives, and with bromine gave the oxidation product. Reaction of the chloro derlvative with acyihydrazine, sodium azide, primary amines, and phenylhydrazine gave triazole derlvative, tetrazole derivatlve, (arylamino)pyridazine, and phenylhydrazinopyridazine, respectively.

There have been reports of 4,5-dihydropyridazinones that have antihypertensive activity, although they have no classical hypotensive pharmacophor (1). In addition, Nannini (2) has recently reported that pyridazinones have analgesic and antiinflammatory activity. We report here on the synthesis of some 4,5-dihydropyridazine derivatives via alkylation of 6-(4-chloro-3-methylphenyl)-4-(2,5-dimethylphenyl)-3-oxo-2,3,4,5-tetrahydropyridazine (2a), whose synthetic route was reported by El-Hashash et al. (3) (Scheme I). The pyridazinone 2a could be alkylated with a variety of electrophilic reagents, namely, dialkyl sulfate and ethyl chloroacetate in dry acetone, by using anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ as catalyst (4). The products were identified as 3 -O-alkylated 4,5-dihydropyridazine derivatives 3a-c.
The compound 3 c reacts with benzylamine and/or p anisidine to give the N-arylamide derivatives 3 d and $3 \boldsymbol{3}$, respectively.

Interaction of 2a with a mixture of $\mathrm{POCl}_{3} / \mathrm{PCl}_{5}$ (5) gives 3-chloro-4,5-dihydropyridazine derivative 4.

Recently (6), it was reported that 6 -(substituted phenyl)-1,2,4-tetrazolo [4,3-b] pyridazines show activity in tests predictive of anxiolytic activity. Thus, reaction of 4 with acylhydrazines, namely, acetylhydrazine, benzoylhydrazine, and salicyloylhydrazine in refluxing butanol, gave triazolopyridazines 5a-c. On the other hand, 4 reacts with NaN_{3} in boiling DMF (7) to give 1,2,3,4-tetrazolopyridazine 6.

Scheme I

$\stackrel{1}{1}$

a, $\mathrm{F}=\mathrm{H}$
b, $R=\mathrm{C}_{6} \mathrm{H}_{5}$
Compound 4 submitted to react with p-toluidine, p-anisidine, and phenylhydrazine gave 3-(arylamino) and 3-(phenylhydrazino) derivatives 7.

Oxidation of the dihydropyridazinone $2 a$ with $\mathrm{Br}_{2} / \mathrm{AcOH}$ gave the pyridazinone derivative 8.

Experimental Section

Melting points reported are uncorrected; the IR spectra were determined with a Pye Unicam Ltd. (Cambridge, England) part No. 641751 spectrophotometer by using the KBr wafer technique (Scheme II). (For the structural assignments of. Table I.)

Reaction of the Acld 1 with Hydrazines. Formation of Pyridazinones (2a and 2b). A solution of the acid 1 (0.01 mol) in 1-butanol (50 mL) was treated with hydrazine hydrate or phenylhydrazine (0.01 mol) and the mixture refluxed for 5 h . The solid that separated after concentration and cooling was crystallized from a proper solvent to give the desired pyridazinones 2a and 2b. The results are given in Table I.

Action of Dlalkyl Sultate or Ethyl Chloroacetate on 2a. Formation of 3a-c. A mixture of 2a (0.01 mol), anhydrous

Scheme II

Table 1. Physical Data and IR Spectra of Prepared Compounds ${ }^{a}$

				IR (KBr) ν, cm^{-1}					
compd	mp, ${ }^{\circ} \mathrm{C}$	solv of cryst ${ }^{\text {b }}$	yield, \%	$\mathrm{C}=0$	$\mathrm{C}=\mathrm{N}$ or $\mathrm{C}=\mathrm{C}$	$\mathrm{O}-\mathrm{C}$	$\begin{aligned} & \mathrm{NH}, \mathrm{OH}, \\ & \text { or } \mathrm{C}-\mathrm{Cl} \end{aligned}$	$\mathrm{C}-\mathrm{H}$	ref
2a	169	$100-120^{\circ} \mathrm{C} \mathrm{PE}$	86	1660	1630		3200	2962	8
2b	165	benzene	72	1650	1635			2955	8
3a	99	60-80 ${ }^{\circ} \mathrm{C} \mathrm{PE}$	80		1635	1230		2965, 2860	9
3b	95	$60-80^{\circ} \mathrm{C} \mathrm{PE}$	78		1630	1245		2950, 2865	9
3c	89	$60-80^{\circ} \mathrm{C} \mathrm{PE}$	82	1750	1635	1240		2950, 2860	10
3d	179	ethanol	72	1665	1635	1242	3150	2935, 2855	11
3e	194	ethanol	72	1670	1635	1260	3200	2945, 2860	11
4	162	benzene ($60-80^{\circ} \mathrm{C} \mathrm{PE}$)	80		1630		650	2955, 2860	12
5 a	171	ethanol	55		1650, 1630			2955, 2860	13
5b	230	1-butanol	51		1650, 1635			2950, 2855	13
5 c	296	1-butanol	55		1655,1630	.	3250	2950, 2846	13
6	132	60-80 ${ }^{\circ} \mathrm{C}$ PE	47		1630	1100°		2960	4
7 a	194	ethanol	57		1630		3200	2950	9
7 b	243	ethanol	53		1625		3250	2955	9
7 c	138	ethanol	27		1630		3200	2960	9
8	206	ethanol	77	1660	1635, 1610		3200		9

${ }^{a}$ The elemental analyses were submitted for review. ${ }^{b} \mathrm{PE}=$ petroleum ether. ${ }^{c}$ Tetrazole ring mode.
potassium carbonate (0.04 mol), and dalkyl sulfate, namely, dimethyl sulfate diethyl suflate, or ethyl chloroacetate (0.04 mol) in dry acetone (60 mL), was refluxed for 15 h . The product was obtained after removing the excess solvent and crystallized from a suitable solvent to give 3a-c (cf. Table I).

Reaction of 3c with Prinary Amines. Formation of 3d and 3e. A solution of $3 c(0.01 \mathrm{~mol})$ in ethanol (50 mL) was treated with benzylamine or p-anisidine (0.01 mol) and then refluxed for 3 h . The solids that separated after cooling were crystallized from a proper solvent to give 3d and 3e, respectively. The results are listed in Table I.

Action of $\mathrm{PCl}_{5} / \mathrm{POCl}_{3}$ on 2a. Formation of 4. A suspension of $2 \mathrm{a}(1 \mathrm{~g}), \mathrm{PCl}_{5}(0.5 \mathrm{~g})$, and $\mathrm{POCl}_{3}(4 \mathrm{~mL})$ was heated on a water bath for 2 h . The reaction mixture was poured gradually into crushed ice and the solid that separated was filtered and crystallized from a proper solvent (cf. Table I).

Reaction of Chloropyrldazine 4 wh Acylhydrazine. Formation of Triazole Dertvative 5. A mixture of 4 (0.01 mol) and the acylhydrazine, namely, acetylhydrazine, benzoylhydrazine, and salicyloylhydrazine (0.02 mol), in 50 mL of 1-butanol was
refluxed for 48 h . The solld that separated after concentrating and cooling was filtered off and washed with n-hexane and then recrystallized from a proper solvent. The results are listed in Table I.

Reaction of Chioropyridazine 4 with Sodlum Azide. Formation of Tetrazole 6. A solution of 4 (0.003 mol), sodium azide (0.5 g). $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL}$), and dimethylformamide (30 mL) was bolled under reflux for 3 h and cooled, and then 100 mL of $\mathrm{H}_{2} \mathrm{O}$ was added. The solid that separated was filtered off and crystallized from a suitable solvent to give the tetrazole 6 (cf. Table I).
Reaction of Chloropyrtdazine 4 whh Amines and Phenylhydrazine. Formation of Arylamino and Phenylhydrazino Derlvative 7. A mixture of $4(0.01 \mathrm{~mol})$ and primary amines, namely, p-toluidine and p-anisidine, or phenylhydrazine (0.01 mol) in ethanol (50 mL), was refluxed for 6 h . The solid that separated after concentrating was crystallized from a suitable solvent (cf. Table I).

Oxidation of 2a with Bromine / Acetlc Acld. Formation of 8. A vigorously stired solution of $\mathbf{2 a}(0.01 \mathrm{~mol})$ in glacial acetic
acid was heated to $\sim 60-70{ }^{\circ} \mathrm{C}$ and then treated portionwise with bromine (0.01 mol) for 15 min . The mixture was stirred further for 3 h and poured into ice water. The solid separated was filtered and crystallized from a proper solvent to give 8.

Regtatry No. 1, 84587-35-9; 2a, 89936-35-6; 2b, 89936-36-7; 3a, 89936-37-8; 3b, 89936-38-9; 3c, 89936-39-0; 3d, 89936-40-3; 3e, 89958-42-9; 4, 89936-41-4; 5a, 89936-42-5; 5b, 89936-43-6; 5c 89958-43-0; 6, 89936-44-7; 7a, 89936-45-8; 7b, 89936-46-9; 7c 89936-47-0; 8, 89936-48-1; $\mathrm{NH}_{2} \mathrm{NH}_{2}, 302-01-2 ; \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NHNH}_{2}, 100-63-0$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}, \quad 100-46-9 ; \quad p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}, \quad 104-94-9 ; \mathrm{CH}_{3} \mathrm{CONHNH}_{2}$ 1068-57-1; $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHNH}_{2}, 613-94-5 ; 0-\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{CONHNH}_{2}, 936-02-7 ; \mathrm{NaN}_{3}$ 26628-22-8; $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}, 106-49-0$.

Lherature CHed

(1) Curran, M. V. J. Med. Chem. 1974, 17, 273.
(2) Nannini, G.; Blasolf, G.; Pertone, E.; Forgione, A.; Buttinoni, A.; Ferrar M. Eur. J. Med. Chem.-Chlm. Ther. 1979, 14, 53.
(3) Mohamed, M. M.; EH-Hashash, M. A.; Islam, I.; Abo-Baker, O. A. Rev. Rourn. Chim. 1982, 27, 865.
(4) El-Hashash, M. A.; Hassan, M. A.; Sayed, M. A. Pak. J. Scl. Ind Res. 1977, 20, 336
(5) El-Hashash, M. A.; El-Kady, M. Y., Mohamed, M. M. Indian J. Chem 1979, 18, 136.
(6) Albright, J. D.; Moran, D. B.; Wright, W. B.; Collins, J. B.; Beer, B. Lippa, A. S.; Greenblat, E. N. J. Med. Chem. 1981, 24, 592.
(7) Leclerc, G.; Wermuth, G. G. Bull. Soc. Chlm. Fr. 1971, 1752
(8) Silversteln, R. M.; Bassier, G. C.; Morrill, T. C. "Spectrometric Identification of Organic Compounds", 4th ed.; Wiley: New York, 1981; pp 123-30.
(9) Bellamy, L. G. "The Infrared Spectra of Complex Molecules", 2nd ed. Wiley: Now York, 1966; pp 96, 115, 205-63.
(10) Reference 9, p 179.
(11) Schwarz, J. C. P. "Physical Methods in Organic Chemistry", 1st ed. Robert Cunningham and Sons: London, 1964; pp 68, 113.
(12) Reference 11, p 113
(13) Dyer, J. R. "Application of Absorption Spectroscopy of Organic Compounds"; Prentice-Hall: Englewood Cliffs, NJ, 1965; p 33.

Received for review October 13, 1983. Accepted January 16, 1984.

Electron Spin Resonance and Mass Spectra of Substituted Azo Cresol Complexes

Mamdouh S. Masoud* and Mohyl M. El-Essawi
Chemistry Department, Faculty of Science, Alexandrla University, Alexandria, Egypt

Abstract

Transition-metal complexes of substiluted azo cresol compounds were prepared. The structures and the mode of bonding were investlgated on the basls of mass spectra for all systems and electron epin resonance for the copper complexes. The electronic characters of substituents on the data are discussed. The copper complexes give anisotroplc ESR spectra with axial symmetry in tetragonal geometry for orbitally nondegenerate ground states.

The interesting azo family compounds continue to find applications in analytical chemistry (1). This type of compound is of blological importance from antifungal and antlbacterial activities (2). The azo group is involved in a number of important biological reactions such as inhibition of DNA, RNA, and protein syntheses, carcinogenesls, and nitrogen fixation (3). In our laboratory (4-16), we studied the azo ligands with different functional groups from the point of view of their ability to be complexed with many metals. As part of a continuing study of the interesting behavior of such compounds, we have undertaken the title investigation of this manuscript.

Experimental Section

The ligands (I) were prepared by the usual method of dia-

Table I. Electron Spin Resonance Data for p-Cresol Azo Complexes

substituent	$g_{\\|}$	g_{\perp}	(g)	G
OCH_{3}	2.300	2.058	2.139	5.17
CH_{3}	2.330	2.065	2.153	5.89
NO_{2}	2.260	2.070	2.133	3.71
COOH	2.322	2.074	2.156	4.35
Br		2.135		
Cl	2.28	2.076	2.147	3.68

A general method was applied for the synthesis of cobalt, nickel, and copper complexes. An ammoniacal alcoholic solution of the metal salt (10 mmol) was mixed with the corresponding ligand (20 mmol) dissolved in ethanol. The mixture was refluxed for about 20 min and then allowed to cool, glving a precipltate of the required complex. The complexes were filtered and washed several times with ethanol and dried in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$. The elemental analysis typified the presence of 1:2 complexes, with cobait(II), nickel(II), and copper(II) salts and 1:3 iron(III) complexes (6,10).

The ESR spectra of the copper complexes were recorded with E12 (X band) and E15 (Q band) instruments from varian Associates. 2,2-Diphenyl-1-picrythydrazide (DPPH, $g=2.003$) was used as an external standard. The mass-spectral measurements were measured with CH 4 and CH 7 instruments from MAT-Bremen Co., West Germany. The physical measurements were done at the Chemistry Department, Marburg University, West Germany.

Results and Discuselon

Electron Spln Resonance of Copper Complexes. The Xband spectra of the polycrystalline copper complexes (Figure 1) at room temperature are typical of those for axial symmetry

